Mentoring Professional Collaboration and Communication in the Physics Laboratory

Suzanne White Brahmia, Jared Canright, Yasmene El Hady, Charlotte Zimmerman
29 July 2021

Contact: brahmia@uw.edu
The team

Contact: brahmia@uw.edu
Acknowledgements and Support

Contact: brahmia@uw.edu

UW Physics Education Research Group

- Faculty
 - Paula Heron
 - Peter Shaffer

- Lecturers & Staff
 - Eddie Mendoza
 - Donna Messina
 - Jack Olsen

- Postdocs
 - Clausell Mathis
 - Alexis Olsho

- Graduate Students
 - Anne Alesandrini
 - Jesse Ashworth
 - John Goldak
 - Kristen Kellar

Funding

- University of Washington
 - Curricular Commons Innovation Fund
 - Student Technology Fee

- NSF Graduate Research Fellowships
 - DGE-1762114 and DGE-1256082
Roadmap

• What problem motivates this work?
• What does DBER research suggest?
• What are we doing?
• Are we having any success?

Contact: brahmia@uw.edu
Roadmap

• What problem motivates this work?
• What does DBER research suggest?
• What are we doing?
• Are we having any success?

Contact: brahmia@uw.edu
Solvay 1911 – the world's first physics conference

Contact: brahmia@uw.edu
Solvay 1911 – the world’s first physics conference

Contact: brahmia@uw.edu
Solvay 1927

Contact: brahmia@uw.edu
Solvay 1933

Contact: brahnia@uw.edu
Solvay 1933

Contact: brahmia@uw.edu
Solvay 2011 – the centennial of the world’s first physics conference

Contact: brahmia@uw.edu
Solvay 2011 – the centennial of the worlds first physics conference

Contact: brahmia@uw.edu
Viewpoints
(Hazari & Potvin 2005)

- Perhaps there is a biological foundation.
- Perhaps, as a subject, physics just naturally appeals to its current practitioners only.
- Perhaps there is an (unintended) bias in the culture of the physics community that favors the current majority by repelling the minority.

Contact: brahmia@uw.edu
• Perhaps there is a biological foundation.
• Perhaps, as a subject, physics just naturally appeals to its current practitioners only.
• Perhaps there is an (unintended) bias in the culture of the physics community that favors the current majority by repelling the minority.
Characteristics

SES

<table>
<thead>
<tr>
<th></th>
<th>Top 20% (n<sub>sample</sub>=98)</th>
<th>The rest (n<sub>sample</sub>=363)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT_M</td>
<td>710</td>
<td>670</td>
</tr>
<tr>
<td>FCI % pre/change</td>
<td>65/+9</td>
<td>42/+9</td>
</tr>
<tr>
<td>Math Reasoning % pre/change</td>
<td>51/+4</td>
<td>43/-2</td>
</tr>
<tr>
<td>CLASS Problem Solving (Gen) % pre/change</td>
<td>71/-2</td>
<td>62/-10</td>
</tr>
<tr>
<td>CLASS Personal Interest % pre/change</td>
<td>73/0</td>
<td>65/-9</td>
</tr>
<tr>
<td>Average of the Median MHI High School</td>
<td>Q</td>
<td>$0.9*Q$</td>
</tr>
<tr>
<td>p-value</td>
<td>$< .015$</td>
<td></td>
</tr>
<tr>
<td>MHI Quintile</td>
<td>Socioeconomic Status</td>
<td>Schoolwork culture</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2nd</td>
<td>Working class</td>
<td>Work is evaluated for obedience to procedure. Students learn to imitate the teacher in math class.</td>
</tr>
<tr>
<td>3rd-4th</td>
<td>Middle class</td>
<td>Work is getting the right answer. Creative activities are occasional, for fun but not part of learning. Students are given some choice in math on which of two procedures to use to get an answer.</td>
</tr>
<tr>
<td>4th-5th</td>
<td>Affluent professional</td>
<td>Work is a creative activity carried out independently. The products of work should show individuality. Students gather data and use it to learn about mathematical processes.</td>
</tr>
<tr>
<td>Top 1%</td>
<td>Executive elite</td>
<td>Work is developing one’s intellectual powers; students invent ways to measure and calculate in math class.</td>
</tr>
</tbody>
</table>

NJ school math and socioeconomics (J. Anyon 1980)

Contact: brahmia@uw.edu
<table>
<thead>
<tr>
<th>MHI Quintile</th>
<th>Socioeconomic Status</th>
<th>Schoolwork culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>Working class</td>
<td>Work is evaluated for obedience to procedure. Students learn to imitate the teacher in math class.</td>
</tr>
<tr>
<td>3rd–4th</td>
<td>Middle class</td>
<td>Work is getting the right answer. Creative activities are occasional, for fun but not part of learning. Students are given some choice in math on which of two procedures to use to get an answer.</td>
</tr>
<tr>
<td>4th–5th</td>
<td>Affluent professional</td>
<td>Work is a creative activity carried out independently. The products of work should show individuality. Students gather data and use it to learn about mathematical processes.</td>
</tr>
<tr>
<td>Top 1%</td>
<td>Executive elite</td>
<td>Work is developing one’s intellectual powers; students invent ways to measure and calculate in math class.</td>
</tr>
</tbody>
</table>
"The biggest obstacle to success is NOT limitation with math skills or knowing the definition of density…**It's the institutional suppression of thinking.**"

- Richard Steinberg 2011

Contact: brahmia@uw.edu
Most physics students, and especially students from low SES high schools, struggle to assimilate the habits of mind we model.

Many leave our courses with even less expert-like quantitative attitudes and habits than when they started.
Roadmap

- What problem motivates this work?
- **What does DBER research suggest?**
- What are we doing?
- Are we having any success?

Contact: brahmia@uw.edu
Transmission mechanisms of cultural norms
(adapted from Hazari & Potvin 2005)

- **Pedagogically**: through instructional practices, conveying what it means to do physics
- **Socially**: encouraging/discouraging through the structure, interactions, and treatment in the physics community

Contact: brahmia@uw.edu
Target characteristics of physicists

- **Physics Identity**: Physics identity is important characteristics of all successful students. Reward and praise are essential to its development. *(Potvin & Hazari 2013, Hazari et al. 2010, Stout et al. 2012)*

 how a person is viewed by self and others, and how they want to be viewed
• **Physics Identity**: Physics identity is important characteristics of all successful students. Reward and praise are essential to its development. *(Potvin & Hazari 2013, Hazari et. al. 2010, Stout et. al. 2012)*

how a person is viewed by self and others, and how they want to be viewed

A strong physics identity is less likely for students from underrepresented groups (gender, race, ethnicity, socioeconomic status)
Target characteristics of physicists

- **Physics Identity**: Physics identity is an important characteristic of all successful students. Reward and praise are essential to its development. *(Potvin & Hazari 2013, Hazari et. al. 2010, Stout et. al. 2012)*

 how a person is viewed by self and others, and how they want to be viewed

- **Self-efficacy**: Self-efficacy is a significant predictor of success for all students. *(Sawtelle 2011)*

 the extent or strength of one's belief in one's own ability to succeed at physics-related tasks

Contact: brahmia@uw.edu
First steps (Hazari & Potvin 2005)

• change the social climate towards collaboration instead of competition

• rethinking physics curriculum and culture to include broad and diverse worldviews

Contact: brahmia@uw.edu
Theoretical framework: community of practice
(Wegner et. al. 1998, 2002)

- is a group of people who are active practitioners.
- made up of domain, community, and practices
- provides a way for practitioners to share tips and best practices, ask questions of their colleagues, and provide support for each other.
Theoretical framework: community of practice
(Wegner et. al. 1998, 2002)

Contact: brahmia@uw.edu
micro aggressions and micro validations

• aggressions: brief, everyday exchanges that send (unintended) denigrating messages to certain individuals because of their group membership

• validations: just the opposite

• no one event will make or break, but the accumulation can make a difference one way or another.

Contact: brahmia@uw.edu
Theoretical framework: community of practice

Contact: brahmia@uw.edu
Theoretical framework: community of practice

Contact: brahmia@uw.edu

Theoretical framework:

- **Community**
 - Language: assume heterogeneous; gender-neutral
 - Climate: collaborative; welcoming; encouraging
 - Visibility: faculty from under-represented groups

- **Physics Domain**
 - Experimental Practices: based on research-validated curricula and methods
 - Mathematics: Develop appropriate conceptual mathematics

- **Pedagogical Practices**
 - Group Work: validated sociocultural collaborative norms
 - Student-centered: based on research-validated curricula and methods

SELF-EFFICACY

PHYSICS IDENTITY

MICRO VALIDATIONS
Summary: Some suggested Practices

- Group norms (code of conduct)
- Effective collaboration as a learning objective
- Authentic intellectual challenge
- Student-centered community of practice

Contact: brahmia@uw.edu
Laboratory courses can:

- Foster self-efficacy in physics practices
- Enrich beliefs about the scientific practice
- Model a welcoming and inclusive community
- Help students develop professionalism

Contact: brahmia@uw.edu
Roadmap

• What problem motivates this work?
• What does DBER research suggest?
• **What are we doing?**
• Are we having any success?

Contact: brahmia@uw.edu
One attempt a reframing “successful” in the physics laboratory

Contact: brahmia@uw.edu

Context is a 200-level lab course: *Introduction to Experimentation*

- Learn to work on a team
- Ask scientific questions and design and conduct experiments to answer them
- Develop own methods for data reduction, modeling, error propagation
- Communicate through reports and presentations

- **There is no designated physics context associated with this lab**
One attempt a reframing "successful" in the physics laboratory

I. Shift in learning objectives and assessment from individual to Collective Intelligence
 • independent of the average IQ of its members
 • depends on equitable #words spoken per member, and average social intelligence of group members
 (Woolley, Chabris, Pentland, Hashmi, Malone in Science 2010)

II. Develop self-efficacy through engagement in a community of experimental physics practices

Contact: brahmia@uw.edu
I. Fostering CI through Community of Practice

- Dedicated lecture time throughout the course to learning about effective collaboration
- Professional communication platform (Slack)
- Student activities:
 - Code of conduct
 - Teamwork agreements
 - Group roles with scripts
- Mentoring: management and guidance
Student driven community of practice

Connected through professional communication platform

Lecture effective collaboration

Student activities and Mentoring

Contact: brahmia@uw.edu
<table>
<thead>
<tr>
<th>GROUP ROLES AND ACTIONS</th>
<th>WHAT IT SOUNDS LIKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting Manager</td>
<td>"Let's come back to this later if we have time."</td>
</tr>
<tr>
<td>• Direct the sequence of steps.</td>
<td>"We need to move on to the next step."</td>
</tr>
<tr>
<td>• Keep your group "on-track."</td>
<td>"What do you think about this idea?"</td>
</tr>
<tr>
<td>• Make sure all group members participate.</td>
<td></td>
</tr>
<tr>
<td>• Watch the time spent on each step.</td>
<td></td>
</tr>
<tr>
<td>Recorder/checker</td>
<td>"Do we all understand this diagram?"</td>
</tr>
<tr>
<td>• Act as a scribe for your group.</td>
<td>"Are we in agreement on this?"</td>
</tr>
<tr>
<td>• Check that all group members are able to effectively use Slack and Zoom</td>
<td></td>
</tr>
<tr>
<td>• Check for understanding of all members.</td>
<td></td>
</tr>
<tr>
<td>• Make sure all members of your group agree on plans and actions.</td>
<td></td>
</tr>
<tr>
<td>• Make sure names are on group products.</td>
<td></td>
</tr>
<tr>
<td>Skeptic</td>
<td>"What other possibilities are there?"</td>
</tr>
<tr>
<td>• Help your group avoid coming to agreement too quickly.</td>
<td>"Let's try to look at this another way."</td>
</tr>
<tr>
<td>• Make sure all possibilities are explored.</td>
<td>"I'm not sure we're on the right track."</td>
</tr>
<tr>
<td>• Suggest alternative ideas.</td>
<td></td>
</tr>
<tr>
<td>GROUP ROLES AND ACTIONS</td>
<td>WHAT IT SOUNDS LIKE</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Meeting Manager</td>
<td>WHAT IT SOUNDS LIKE</td>
</tr>
<tr>
<td>• Direct the sequence of steps.</td>
<td>"Let's come back to this later if we have time."</td>
</tr>
<tr>
<td>• Keep your group "on-track."</td>
<td>"We need to move on to the next step."</td>
</tr>
<tr>
<td>• Make sure all group members</td>
<td>"What do you think about this idea?"</td>
</tr>
<tr>
<td>participate.</td>
<td></td>
</tr>
<tr>
<td>• Watch the time spent on each step.</td>
<td></td>
</tr>
<tr>
<td>Recorder/checker</td>
<td>WHAT IT SOUNDS LIKE</td>
</tr>
<tr>
<td>• Act as a scribe for your group.</td>
<td>"Do we all understand this diagram?"</td>
</tr>
<tr>
<td>• Check that all group members are</td>
<td>"Are we in agreement on this?"</td>
</tr>
<tr>
<td>able to effectively use Slack and</td>
<td></td>
</tr>
<tr>
<td>Zoom</td>
<td></td>
</tr>
<tr>
<td>• Check for understanding of all</td>
<td></td>
</tr>
<tr>
<td>members.</td>
<td></td>
</tr>
<tr>
<td>• Make sure all members of your</td>
<td></td>
</tr>
<tr>
<td>group agree on plans and actions.</td>
<td></td>
</tr>
<tr>
<td>• Make sure names are on group</td>
<td></td>
</tr>
<tr>
<td>products.</td>
<td></td>
</tr>
<tr>
<td>Skeptic</td>
<td>WHAT IT SOUNDS LIKE</td>
</tr>
<tr>
<td>• Help your group avoid coming to</td>
<td>"What other possibilities are there?"</td>
</tr>
<tr>
<td>agreement too quickly.</td>
<td>"Let's try to look at this another way."</td>
</tr>
<tr>
<td>• Make sure all possibilities are</td>
<td>"I'm not sure we're on the right track."</td>
</tr>
<tr>
<td>explored.</td>
<td></td>
</tr>
<tr>
<td>• Suggest alternative ideas.</td>
<td></td>
</tr>
</tbody>
</table>

Contact: brahmia@uw.edu
One attempt a reframing “successful” in the physics laboratory

I. Shift in learning objectives and assessment from individual to Collective Intelligence
 • independent of the average IQ of its members
 • depends on equitable #words spoken per member, and average social intelligence of group members (Woolley, Chabris, Pentland, Hashmi, Malone in Science 2010)

II. Develop self-efficacy through engagement in a community of experimental physics practices

Contact: brahmia@uw.edu
II. Community of experimental physics practices
 • processes of experimental physics, including **student designed experiments** (Etkina et al, 2007)
 • Data reduction/modelling **constructed** through invention activities (Schwartz et al 2011, Day et. al 2010)
 • Collaborative Report writing
• Under the ISLE framework, **observational experiments** are a place for open-minded exploration and creation of a model.
Model Creation Curriculum

- Observational experiment activities are hard to design
- Anything accessible is a known phenomenon with known answers

Contact: brahmia@uw.edu
Model Creation Curriculum

- Observational experiment activities are hard to design
- Anything accessible is a known phenomenon with known answers
- Students are conditioned to confirm known answers in science labs
Intervention: NOMR Labs

(Canright et al., 2020)

Contact: brahmia@uw.edu

NOMR: Novel Observations in Mixed Reality

- Students explore fictitious physical phenomena in an immersive 3D environment
 - Hands-on
 - Experimental uncertainty present
 - "Answers" never shared
 - Phenomena consistent with known physics
Roadmap

• What problem motivates this work?
• What does DBER research suggest?
• What are we doing?
• Are we having any success?

Contact: brahmia@uw.edu
Early indications of some success:

Measures of some effects of collaboration

Contact: brahmia@uw.edu
Engagement With TAs
• Mitigates anxiety
 • related to lower success in engineering
 • correlated with being from underrepresented group
• Reward and praise are important to development of strong physics identity

Student-to-student engagement
• Sharing experiences mastering material can build self efficacy, particularly for women
 (Sawtelle, Brewe, Goertzen, Kramer, 2012)
1. Messaging activity in Slack → Student-to-student engagement
Average messaging activity per week per person

(El Hady et al., 2020)

Contact: brahmia@uw.edu
1. Messaging activity in Slack → Student-to-student engagement
Average messaging activity per week per person

- Activity over 10; nearly three times the activity as the comparison intro mechanics course

- We attribute this difference to collaborative graded reports and presentation

Contact: brahmia@uw.edu
1. Messaging activity in Slack \(\rightarrow \) Student-to-student engagement
Average messaging activity per week per person

2. Survey Items
5-point Likert Scale questions:

<table>
<thead>
<tr>
<th>Interpreted value</th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td></td>
</tr>
</tbody>
</table>
Engagement with TAs:

- At least one TA in this class cares about how much I learn.

Student-to-student Engagement

- I have found students in this class with whom I am comfortable working.
- I feel comfortable sharing ideas with other students I’ve worked with, even if I'm not sure my ideas are fully correct.
Engagement Item results

<table>
<thead>
<tr>
<th>Item (emphasis added)</th>
<th>Intro Mechanics ± (0.04)</th>
<th>Intro to Experiment ± (0.09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one TA in this class cares about how much I learn.</td>
<td>+1.31</td>
<td>+1.31</td>
</tr>
<tr>
<td>I have found students in this class with whom I am comfortable working.</td>
<td>+0.86</td>
<td>+1.21</td>
</tr>
<tr>
<td>I feel comfortable sharing ideas with other students I’ve worked with, even if I'm not sure my ideas are fully correct.</td>
<td>+0.92</td>
<td>+1.25</td>
</tr>
</tbody>
</table>

Contact: brahmia@uw.edu
Early indications of some success: *Impact of science practices focus*

Contact: brahmia@uw.edu
Study Details

Contact: brahmia@uw.edu

Instructional Context:
• 100-level honors electromagnetism lab, Winter quarter 2021
• Groups of 3-4 students
• 37 students, mostly freshmen

Software: NOMR software developed in Unity in-house
Hardware: Oculus Quests lent to 1 student per group, streamed over Zoom
• Hu and Zwickl developed a student epistemology assessment consisting of four free-response questions:

1. Why are experiments a common part of physics classes?

1. Supplemental learning
2. Theory testing
3. Foundation of physics
4. Scientific abilities
5. Science appreciation
6. Career preparation

2. Why do scientists do experiments for their research?

1. Theory testing
2. Discovery
3. Theory development
4. Technology advancement

3. What defines a scientific theory?

1. Evidence supported
2. Explanatory and predictive power
3. Quantitative aspect

4. How do theory and experiment relate?

1. Experiment tests theory
2. Theory explains experiments
3. Experiment inspires theory
4. Theory guides experiment
Results

(Canright et al., 2021)

Compared to Hu and Zwickl and Zwickl '17, study participants:

1. See the role of instructional labs more to teach scientific abilities and less as a supplement to lecture learning

2. See experimentation in science not just as a means to test theories, but to discover and develop them

3. Have a stronger understanding of the iterative relationship between experiment and theory
Results

Compared to Hu and Zwickl '17, study participants:

1. See the role of instructional labs more to teach scientific abilities and less as a supplement to lecture learning
2. See experimentation in science not just as a means to test theories, but to discover and develop them
3. Have a stronger understanding of the iterative relationship between experiment and theory
Compared to Hu and Zwickl '17, study participants:
1. See the role of instructional labs more to teach scientific abilities and less as a supplement to lecture learning
2. See experimentation in science not just as a means to test theories, but to discover and develop them
3. Have a stronger understanding of the iterative relationship between experiment and theory
Compared to Hu and Zwickl '17, study participants:

1. See the role of instructional labs more to teach scientific abilities and less as a supplement to lecture learning

2. See experimentation in science not just as a means to test theories, but also to discover and develop them
Results

Compared to Hu and Zwickl '17, study participants:

1. See the role of instructional labs more to teach scientific abilities and less as a supplement to lecture learning

2. See experimentation in science not just as a means to test theories, but also to discover and develop them
Results

Compared to Hu and Zwickl '17, study participants:
1. See the role of instructional labs more to teach scientific abilities and less as a supplement to lecture learning
2. See experimentation in science not just as a means to test theories, but also to discover and develop them
Summary of findings

• **Pedagogically**: through instructional practices, conveying what it means to do physics

• **Socially**: encouraging/discouraging through the structure, interactions, and treatment in the physics community

Contact: brahmia@uw.edu
Summary of findings

• **Pedagogically:** through instructional practices, conveying what it means to do physics

 ➢ *Creative practices of authentic science shows evidence of shifting epistemology*

• **Socially:** encouraging/discouraging through the structure, interactions, and treatment in the physics community

Contact: brahmia@uw.edu
Summary of findings

• **Pedagogically:** through instructional practices, conveying what it means to do physics

 ➢ Creative practices of authentic science shows evidence of shifting epistemology

• **Socially:** encouraging/discouraging through the structure, interactions, and treatment in the physics community

Contact: brahmia@uw.edu
Summary of findings

• Pedagogically: through instructional practices, conveying what it means to do physics

 ➢ Creative practices of authentic science shows evidence of shifting epistemology

• Socially: encouraging/discouraging through the structure, interactions, and treatment in the physics community

 ➢ *Student mediated community of practice shows promise of fostering engagement*
Summary of findings

• **Pedagogically:** through instructional practices, conveying what it means to do physics

 ➢ Creative practices of authentic science shows evidence of shifting epistemology

• **Socially:** encouraging/discouraging through the structure, interactions, and treatment in the physics community

 ➢ *Student mediated community of practice shows promise of fostering engagement*

Effective collaboration needs ongoing management. TAs need training in group management
• The laboratory is an excellent space for broadening our message of “successful in physics.”

• Creating professional spaces in which it is normal to experience both hardship and success serves a more diverse group of students in physics.

• Mentoring students in being generous and adaptive to a variety of collaborative challenges helps prepare them for success in the workplace.

https://www.compadre.org/per/conferences/2021/

Contact: brahmia@uw.edu